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A REDUCED-ORDER MODEL OF A FLUID-LOADED, 
ELASTOMERIC-COATED METALLIC PLATE 

1. INTRODUCTION 

Elastomeric-coated metallic plates are used in a wide variety of applications. In marine 

systems, they are typically used to absorb energy or to transmit acoustic energy from the exterior 

of an underwater object to a location on the interior of the coating or metallic plate. Sometimes 

sensors are embedded in the elastomer or the metallic plate to measure the energy field that is 

insonifying the structure. Energy at different frequencies and wavenumbers will cause a 

different response in both the coating and the metal. One way to model this response is a full- 

order model—i.e., deriving the equation of motion of two thick elastic plates and then coupling 

them to an acoustic wave equation that models the fluid load. Because the resulting system 

matrix is eight by eight, this model has a final solution that is expressed in open form, and the 

system matrix must be numerically inverted at every fi'equency and wavenumber of interest. It is 

difficult to understand the physics in such a solution because the interaction of the coefficients in 

the response is implicit. A second method is to model the metallic plate as a discrete mass, 

which eliminates one-half of the equations. Once this is done, the system equations have a 

dimension of four by four, which allows the matrix to be symbolically inverted, yielding a 

closed-form solution to the problem at every wavenumber and frequency. Closed-form solutions 

are advantageous because the dynamics associated with the system are explicit. In addition, 

applying inverse methods to the problem is much easier when a closed-form model is available. 

This report develops both a fiill-order model and a reduced-order model of a fluid-loaded, 

elastomeric-coated metallic plate and compares the results graphically for system displacements 

and stresses at various fi-equencies and wavenumbers. 
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2. FULL-ORDER MODEL 

The transfer functions are derived by modeling the elastomeric coating and the metalHc plate 

as elastic structures, both of which are independently governed by the equation' 

o2 

dl 
(1) 

where p is the density, X and // are the complex Lame constants, t is time, • denotes a vector dot 

product, and u is the Cartesian coordinate displacement vector expressed as 

u = i Uy(x,y,z,t) 
u.(x,y,z,t) 

(2) 

with subscript x denoting the direction parallel to the plates,;; denoting the direction orthogonal 

to the x-direction, and z denoting the direction normal to the plates. The modeled geometry and 

the coordinate system of the structure are shown in figure 1. The symbol V is the gradient vector 

differential operator written in three-dimensional Cartesian coordinates as^ 

3c       dy y dz 
(3) 

with i^ denoting the unit vector in the x-direction, iy denoting the unit vector in the j-direction, 

and /; denoting the unit vector in the z-direction. The symbol V^ is the three-dimensional 

Laplace operator operating on vector u as 

V^U = V^M^z; + V^M  /•   + V^M,/, , 
y y (4) 

with V   operating on scalar u as 

vX.,-'=v*V".,^,-' ^ Ux,y,-.   ^   ^  ^x,yr.   , d\ x,y,: 

dx' dy' dz' 
(5) 



The term V "u is the divergence, which is equal to 

V»u=—^ + —-■\-- 
dx     dy     dz 

(6) 
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Figure 1. Modeled Geometry and Coordinate System for Full-Order Model 



The applied loading effect of the pressure in the fluid acting on the surface of the top 

elastomeric plate is modeled as an acoustic load. Note that p. A, and ju are the properties of each 

specific layer. 

The displacement vector u is written as 

u = V<f> + V xip. (7) 

where ^ is a dilatational scalar potential, x denotes a vector cross product, and ip is an 

equivoluminal vector potential expressed as 

^ y/y{x,y,z,t) 
ij/.{x,y,z,t) 

(8) 

The problem is now simplified as a two-dimensional response {y = Q and d{-) I dy = Q), 

since it is known that an acoustic plane wave excites the plate. Expanding equation (7) and 

breaking the displacement vector into its individual nonzero terms yields 

,       ,    d(l){x,z,t)   ^y/y{x,z,t) 
u,(x,z,t) = ^-  

C7X oz 
(9) 

and 

,     d(j){x,z,t)    dxi/ {x,z,t) 

^z dx 
(10) 

Equations (9) and (10) are next inserted into equation (1), which results in 

CJW (f){x,Z,t) = -^  
St 

(11) 

and 

,2v72.„   ,„ _ ^^_^^¥yi.X,Z,t) cy'ii/Jx,z,t) = - 
dt" 

(12) 



on both material layers. Equation (11) is the dilatational component and equation (12) is the 

shear component of the displacement field.^ Correspondingly, the constants Cd and Cs are the 

complex dilatational and shear wave speeds, respectively, and are determined by 

^.=.F^ (13) 

and 

c,=J-. (14) 

The relationships of the Lame constants to the compressional and shear moduli are shown as 

A = ^  (15) 

and 

//-G = —^—, (16) 
2(1+ t;) 

where E is the complex compressional modulus (N/m ), G is the complex shear modulus (N/m ), 

and V is the Poisson's ratio of the material (dimensionless). 

The conditions of infinite length, two-dimensional response {y = 0), and steady-state 

response are now imposed, allowing the scalar and vector potential to be written as 

(pix,z,t) = (^(z)exp(ik^x)exp(icot) (17) 

and 

i//y(x,z,t) = ^'(z)exp(ik^x)exp(icot), (18) 

where kx is the wavenumber of excitation with respect to the x-direction (rad/m), co is the 

frequency of excitation (rad/s), and i is the square root of-1. Note that equations (17) and (18) 



are valid on both layers. For acoustic excitation, the wavenumber is related to the incident angle 

by k^ = {0)1 Cj)sm{6), where 0 is the incident angle (rad) with a value of 0 corresponding to 

broadside excitation. 

Inserting equation (17) into equation (11) yields 

.2 + a'^(z)^0, (19) 

where 

and 

(20) 

CO 

K- — - (21) 

Inserting equation (18) into equation (12) yields 

^^ + AMZ) = 0, (22) 
clz 

where 

P = ^kl-k] (23) 

and 

CO 
K= — - (24) 

The solution to equation (19) is 

0(z) = A(k^,co)exp(iaz) + B(k^, co)exp(-iaz), (25) 



and the solution to equation (22) is 

^'(z) = C(k,, «)exp(i/&) + D(k„ 0})exp(-i/3z), (26) 

where A,B,C, and D are constants that are determined below. The displacements can now be 

written as functions of the unknown constants: 

u.{x,z,t) = { \a{A{k^,o})ey.p(iaz)-B{k^,(o)exp{-\az)\ 

+ \k^[C{k^,o))Gxip(\pz) + D{k^,o})Qxp{-ipz)] }exp(iA;^x)exp(i<yO (27) 

and 

u^{x, z,0 = { i^;t[A^X' ^) exp(i«i) + B{k^, co) exp(-iai)] 

- i/3[C{k^, 0}) exp(iy9z) - Dik^, a)exp(-i/?z)] } exp(i^^x) exp(i«0- (28) 

The solutions of the constants are determined by formulating the problem with the presence of an 

acoustic load. 

The acoustic pressure in the fluid is governed by the wave equation and is written in 

Cartesian coordinates as"* 

a'^p^{x,z,t) ^d^p„{x,z,t)     1 ^V„(x,z,0_Q ^29) 

^z^ ^x^ c]        dt^ 

where p„{x,z,t) is the pressure (N/m^ ), z is the spatial location (m) normal to the plate, and Cj 

is the compressional wavespeed of the fluid (m/s). The acoustic pressure is modeled as a 

function at definite wavenumber and frequency as 

p„(x,z,t) = P^(z,k^,co)expiik^x)Qxp(icot). (30) 

Inserting equation (30) into equation (29) and solving the resulting ordinary differential equation 

yields 

P^(z,k^,ca) = G(k^,Q})exp(irz) + Pj(o))exp(-i)^), (31) 



where the first term on the right-hand side represents the reradiated pressure field and the second 

term represents the appHed incident pressure field (the forcing function) acting on the structure. 

Inequation (31), 

CO 

v^/y 
(32) 

where y is purely real or imaginary, depending on the sign of the argument. When the sign of 

the argument is positive, the analysis is in the acoustic cone, and when the sign of the argument 

is negative, the analysis is in the nonacoustic region. For acoustic sonar response, the analysis is 

typically studied in the acoustic cone. 

The transfer functions are now derived by coupling the pressure in the fluid to the 

displacement in the elastomer. The interface between the fluid and the solid surface at z = c 

satisfies the linear momentum equation, which is^ 

Pf 
d u.(x,c,t) _   ^^(x,c,t) 

a' dz 
(33) 

where pj is the density of the fluid (kg/m^). The normal and tangential stresses in the system at 

the boundary z = c are 

n, {X, C, 0 = (^ + 2/^2 )       \ + ^ \ = -Pa (X, C, t) 
dz dx 

(34) 

and 

r,^(x,c,0 = //2 
du^{x,c,t)    du.{x,c,f) 

dz dx 
= 0, (35) 

where the subscript 2 denotes plate 2, which is the elastomer. The interface between the plates 

requires four equations. The first two equations, which are displacement constraints, are 

"-■(^'^'0|p,ate2 = "-'(^'*'0|p, atel (36) 



and 

^xix^b,t)\ =U,{x,b,t)L,,,^, (37) 

where plate 1 is the metallic piece. The second two equations are stress constraints: 

^---'(^'^'Olpiate 2 = ^-'-'(^'*'Olpiate 1 
(38) 

and 

^^(^.^0|p,ate2 = ^^(^'^'^)|pl atel' (39) 

Finally, the normal and tangential stresses in the system at the boundary z = a are 

T.,_{x,a,t) ^{\+ 2//i)^ + \ = 0 
az ax 

(40) 

and 

T,^(x,a,t) = jUi 
du^{x,a,t)    du.{x,a,t) 

8z dx 
= 0. (41) 

Combining equations (27) through (41) yields the eight-by-eight linear system of equations 

Ax = b, (42) 

where, using c = 0, the entries of equation (42) are 

2 2 2     Pf^ ^2 

r 
(43) 

^12 -~(^2^~^^2M2 ~^^x ~ 
2     PfOO CCj 

r 
(44) 

4,3 = -2*;tAy"2 + r 
(45) 
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44 =2^2/^2+ — 

4,5=0, 

4,6=0' 

4,7=0, 

4,8=0, 

4,l=-2/^2^x«^2, 

4,2=2y"2^x«2' 

4,3=/"2/^2-M^ 

^2,4 = f^lPl ~ I^T^x ' 

4,5=0, 

4,6=0, 

4,7=0, 

o?k. 

4,8=0, 

4,i=0«2)exp(ia2*), 

4,2=(-i«2)exp(-iQr2*), 

4,3 = (i^ JexpCiy^ji), 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 
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^3,4 - 

*3,5 

^3,6 ■" 

^3,7 - 

^3,8 - 

^4,1 ~ 

^4,2 - 

A,3 ~ 

M,4 

^4,5 - 

^4,6 - 

M,7 

iA;^)exp(-i/?2*), 

-iaj)exp(iai6), 

iai)exp(-iai6), 

-i^^)exp(i/?,6), 

-ikjexp(-ip^b). 

iA:^)exp(ia2^)> 

ik^)exp(-ia2b), 

iy92)exp(i/?26), 

i/?2)exp(-iy^2*)' 

ik^)exp(ia^b). 

'ik^)cxp{-ia^b). 

P,)Qxp(ip,b), 

A,8=(-iA)exp(-iA*X 

^5,1 = (-«2^ - 2«2/"2 -^^^^)exp(ia2*), 

^5,2 = (-«2;i2 -2a2/"2 -^*Wexp(-i«2*)' 

^5,3 =(-2^;tAy"2)exp(iA^)' 

^5,4 =(2^;.A/^2)exp(-iA*)' 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 
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^5 6 = [oc^A.^ + la^ju-i + X^kl jexp(-iorjZ>), 

^5,7=(2^;,AM)exp(iA*)' 

^5,8 = (- 2^;, AM )exp(-i/?i6), 

A,i =(-2/^2^;.«2)exp(ia2^)' 

A,2 =(2/"2^;t«2)exp(-i«2^)' 

A,4 = (/"2A2 -/"2^^)exp(-iy?2^), 

^6,5=(2y"i^;,«i)exp(iai6), 

^6 = (-2A^;c«i)exp(-i«i6), 

^6,7 = (-AA^ +M^^^)exp(iA^). 

A,8 = (- AAI^ + /"i^^ )exp(-iA*), 

A,2=0, 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 
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^7 5 = r ^^^^ ~ 2al/u^ - A]kl jexp(i«ifl), (95) 

^7,6 - r '^^^i" 2al/u^ - X^kl )exp(-iaia), (96) 

A^j = {-2kj,ju,)cxp(ij3,a), (97) 

A,,={2kJ,M,)exp(-ij3,a), (98) 

A,i=0, (99) 

^8,2=0, (100) 

^3=0, (101) 

^8,4=0, (102) 

^8,5 = (- '^f^\^x<^\ )exp(iaifl), (103) 

^3 6 = (2/^,A;;,o;, )exp(-ia,a), (104) 

^8,7 = U/?,' - A^')exp(iA«), (105) 

4,8 = UA' - A*')exp(-iA«). (106) 

xi, =^2(^,,ft;), (107) 

x^^=B^ik,,(o\ (108) 

^3,i=C2(^.'^X (109) 

x,.,=D^{k,,co\ (110) 

X5i=4(^,,«), (111) 

14 



(112) 

(113) 

(114) 

(115) 

(116) 

(117) 

Vi=0. (118) 

(119) 

(120) 

(121) 

^6,\ = B,(k, 0)), 

^7.1 = C,(k, ,0)), 

^8,1 = D,(k, ,0)), 

\r- = -2Pjico), 

b2^ = 0, 

b,y- = 0, 

^5,1 = 0, 

*6,1 = 0, 

^,1 = 0, 

and 

^8,1 = 0. (122) 

Using equations (43) through (122), the solution to the constants A^, B^, Q, D^, Aj, B2, C2, 

and D2 can be found by 

x = A~'b. (123) 

The transfer function between the normal displacement at location z, when z<b, and the 

incident pressure (acoustic load) can be written as 

15 



- 4(kx,<y) i«i exp(i«iz)- B^(k^,co) ia^ exp(-iaiz) 

+ Q {k,, CO) ik, exp(iAz) + A (k,, 0)) ik, expi-i^^z) (124) 

or, when z>b, as 

T{z,k^,co)- ——— 
P;(<y) 

= A2{k^,co)ia2 Q\p(\a2z)- B2{k^,(D)\a2 exp(-icir2^) 

+ C2 {k^, co) ik^ expCiy^jz) + Dj (k^, co) ik^ exp(-iy?2z). (125) 

The transfer function between the tangential displacement at location z, when z<b, and the 

incident pressure can be written as 

Pjico) 

= ^1 (k^, co) ik^ exp(i«i2) + 5, (k^, co) ik^ exp(-i a^z) 

+ -<:^(k„co)i/?, expCiy^iz) + D,(k„co)xp, expC-i^^) (126) 

or, when z > Z>, as 

U^{z,k^,ci)) 
T{z,k^,a))^ 

Pjik^M 

- A2 ik^, co) ik^ exp(iQr2z) + ^2 (k^, co) ik^ exp(-i a2z) 

+ -C2{k„co) xp2 exp(iA2) + J^iik,,(o) \p2 exp(-iA^)- (127) 

16 



The transfer function between the normal stress at locationz, when z<b, and the incident 

pressure can be written as 

+ Ci (k^, coX-lkJ^Mx) exp(iAz) + A iK' omKPxMx) exp(-/Az) (128) 

or, when z > 6, as 

r(z,^,,^) = ^--^"-^-^> 
p,(^) 

= A2{k^,co)[-alA2-2al;^2 -^^^^)exp(ia2z) 

+ B2{k^,o})(-al^-2alM2 -^A:^^)exp(-ia2z) 

+ C2(A:„fi>X-2M2/"2)exp(iy^2^) + A(^.,«)(2^;.A/"2)exp(-iA4 (129) 

The transfer function between the shear stress at locationz, when z<b, and the incident 

pressure can be written as 

r(z,it^,6>)=^^^^M^ 

= -A^ {k^, CO) {2/u^k^a^ )exp(i a^z) + B^ (k^, co){2/j^k^a^ )exp(-i OTJZ) 

+ C,ik,,ci))lju,(j3^ -*,')]exp(iAz) +A(^..^)[M(A' -^')]exp(-iA2) (130) 

or, when z>b, as 

T(z,k^,o)) = 
Pj(k„CO) 

= -A2{k^,co)(2/j2k^a2 )exp(ia2z) + B2ik^,co) {2jU2k^a2)exp(-ia2z) 

+ C2(A„a;)[//2(A' -^')]exp(iA^) +A(^.,«)k(A2 -^')]exp(-iA4       (131) 

17 



Equations (124) through (131) are the open-form solutions to the problem, and these equations 

provide the correct answer. However, the physics are not evident, and solving a corresponding 

inverse problem is typically problematic. 

18 



3. REDUCED-ORDER MODEL 

A reduced-order model presents the transfer functions in a closed form, which is a more 

desirable expression than the open-form solutions derived in section 2. Deriving a reduced-order 

model is facilitated by changing the model of the bottom (metallic) plate from an elastic medium 

to a continuous mass that is infinitely stiff This is a reasonable assumption because at high 

frequencies the metallic plate appears rigid to acoustic plane waves, and flexural wave energy 

does not have a significant dynamic effect on the plate response. Although this assumption 

limits the model, it is reasonably accurate in the acoustic domain. The boundary conditions of 

the model at z = c remain equations (33), (34), and (35). The boundary conditions atz = b 

become 

t^Xx,b,t)       du^{x,b,t)        d u.{x,b,t) 
 1- /* — M =—; r.,(x,6,0 = (A, + 2/.,)""-'^^''^-'^ + ^""A^.^.u ^^^ u.^K^,u,.j ^^^2) 

and 

r,^(x,6,0 = //2 
du^{x,b,t)    du.{x,b,t) 

dz dx 
_^duMM^ (133) 

dt 

where Mis the mass per unit area (kg/m^) of the metallic plate. For brevity, the subscript 2 is 

now dropped from the analysis and unsubscripted material constants are related to the 

elastomeric plate. Once these boundary conditions are applied to equations (27) and (28), the 

resuh is a four-by-four linear system of equations that can be written as 

Ax = b, (134) 

where the entries of equation (134) are 

A^i=-a^A-2a^^-Ak;+^ , (135) 
r 

2 

Ai2^-a^A-2a^M-^K-^ , (136) 

19 



A,.^-2kjM + 
Pf Q?k. 

r 

AA = '^KPM + 
y 

A21 = -Ijuk^a, 

Aa = 2/yA:^Qr, 

^2,3 =/"^^-/^^ 

^2,4=y"^^-M^ 

^31 - (~ ^^^ ~ 2(2^// - Ak^ +ico^aM)exp(iab), 

^3 2 = (- or^/l - 2«^/^ - /lA;^ - ioji^aM)exp(-iab), 

^3 3 = (- 2k ^^^ + iQ)^k^M)exp(i/3b), 

^34 =(2A:^/?/^ + i(y^A:^M)exp(-iy56), 

^4 j = (- Ijuk^a - i<»^^^M)exp(iQrZ>), 

J4 2 = (2//A;^a -i6;^A:^M)exp(-icirZ)), 

^43 = (//yg2 -juk^+ico^j3M)exp(ij3b), 

^44 = [MP'^-M^I -\CO^PMyxpi-ifib), 

X\A=A{k^M, 

X2A=B{k^,C0), 

(137) 

(138) 

(139) 

(140) 

(141) 

(142) 

(143) 

(144) 

(145) 

(146) 

(147) 

(148) 

(149) 

(150) 

(151) 

(152) 
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h,\^C(k^,G)), (153) 

X4^i=D(k^,C0), (154) 

b,,=-2Pj{co), (155) 

\i=0, (156) 

\i=0, (157) 

and 

Ki = 0- (158) 

Using equations (135) through (158), the solution to the constants A, B, C, and D can be 

found by 

x = A~%. (159) 

The right-hand side of equation (159) can be solved in a closed-form solution by inverting 

the A matrix and multiplying the resuhs by the b vector. The constants ) in the x vector are knovm 

explicitly and can be re-inserted into equations (125), (127), (129), and (131) to solve for the 

displacements and stresses. In addition, the determinant of the system matrix is available as 

det{A) = 4^'A(k^,co), (160) 

where 

A{k^ ,co) = d^+d2 cos(ah) cos(/3h) + d^ cos(ah) sm(^h) 

+ d^ sm{ah) cos{j3h) + d^ ?.m{ah) sm{/5h). (161) 

with 

d,=Aa/3kl{p'-kl)[2{p'-kl)-{M/p)\p'^klf , (162) 
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+ \{pjlpr){Mlp){P^+klf\ (^^^^ 

d,=m{p^+kl)%jlpy){/3'-2pX + kt) 

+ -x{MIp){J3' -6p^kl+kt) + {pj Ipr){MIpfkli/3^ +klf\ (164) 

d,=\p{P^+klf[Aipjlpy)a^kl 

+ i(M / p){f + 2ak^ - k] ){/3'^ - 2ak^ - k]) 

+ {p^lpy){Mlpfa\l3^+klf\ (165) 

and 

d,={p'-ky+\6kXfi' + 

{Mlpfklif +klf[Aa^fi^+{l3^ -klf] 

+ -i{pjlpr){Mlp)a\/3^+kl)\ (166) 

Once the determinant of the system is known, the transfer function between the tangential 

displacement and the incident pressure can be computed by 

r(.,^^,^) = ^^.(^Az^.^i(£A:^, (167) 

where 

U^ (z,k^,co) = ik^c^ cos(cis) + ik^C2 sin[a(h + z)]sin(/?/z) 

+ ik^c^ cos[a(h + z)] sm(^h) + ik^c^ sm[a(h + z)] cos(^h) 

+ i^^Cj cos[a(h + z)]cos(/3h) + \/3c^ cos(yfe) 

+ i/3cj sm[/3(h + z)]sm(ah) + ijBc^ cos[/3(h + z)]sin(or/z) 

+ i^Cg sm[/3{h + zy]cos{ah) + ific^^ cos[^(h + z)]cos(ah), (168) 

22 



with 

c,^Aapkl[l{/3'-kl)-{Mlp)\p^ + kl)\, (169) 

C2 = l{P^-kl)[{f -klf+{Mlpfkl{fi^+klf\ (170) 

c,=2a{M 1 p){p^ -kl){/3^ +klf. (171) 

c,^-2p{M 1 p){p' -klXP' +kl)\ (172) 

c, = -2aP{p^-kl)[Akl+iMlp)\/3^+klf, (173) 

c, = -lak.iP^ -kl)[l{p^-kl)-{Mlp)\p^^klf', (174) 

c, =-Aa^pk\Akl+iMlp)\/3^+klf , (175) 

c,^-Aa\{Mlp){p^+klf, (176) 

c,=Aapk,{Mlp){p^+k]f, (177) 

and 

c,,=AakX{p^-klf+{Mlpfkl{p^^klf. (178) 

The transfer function between the normal displacement and the incident pressure can be 

computed by 

TT /■-  ;,    ,.,\      TjTr-  ?,    ,,\ 

r(z,t„«)=^i^l*f^ = M5l^). (179) 
P,ia)) pA(k^,o)) 

where 
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f/f (z, k^,o)) = -ac^ sin(Qs) + acj cos[a{h + 2)] sin(y9/z) 

+ -ac3 sin[a(/z + z)]sin(/%) + ac4 cos[or(/? + z)] cos(/%) 

+ -acj sin[a(/; + z)]cos(y^/z) + Ar^Cg sin(yfe) 

+ -k^c-j cos[/3(h + z)] sm{ah) + k^Cg sm[j3(h + z)] sin(ah) 

+ -k^CgCos[fi(h + zy\cos(ah) + k^c^Qsm[fi(h + z)]cos(ah). (180) 

The transfer function between the shear stress and the incident pressure can be calculated using 

r(^,^,^)=:^-(£Al^^^i(£!J^£l^, (181) 

where 

Sl^(z,k^,co) = -liak^c^ sin(«z) + 2iak^C2 cos[a(h + z)]sm(j3h) 

+ -2iak^c^ sm.[a(Ji + z)]sin(/%) + 2\ak^c^ cos\a{h + z)]cos(/?/z) 

+ -2\ak^c^sm[a{h + z)\cos{ph)-i{P^ -kl)c^sin{fiz) 

+ \{P^ - kl)c-, cos[p(h + z)]sm(ah)-iij3^ - k^)cg sm[j3{h + z)]sm(ah) 

+ i(p^-k^)cgCos[j3(h + z)]cosiah)-i(j3^ -k^)c^osm[/3(h + z)]cos(ah).  (182) 

The transfer function between the normal stress and the incident pressure can be calculated using 

•     r(,,^^,^) = ^?..(£Ai^ = ^i(£Ai^, (183) 
' ' "'   ' Pj(co) A(k,,co) 

where 

Sl,(z,k^,a)) = -{P^ -kl)c^ cos(az)-i/3^ -k^)c2 sin[a(/z + z)]sin(/%) 

+ -{/3^ -kl)c^ cos.[a{h + z)'\sm{pK) + -(/?^ -kl)c^ sin[a(/? + z)\cos{j3h) 

+ -iP^ - kl)c^ cos[a{h + z)]cos{ph) + 2pk^c^ cos(pz) 

+ 2pk^Cy sm[P(h + z)]sm(ah) + 2pk^Cg cos[P(h + z)]sm(ah) 

+ 2pk^Cg sm[pih + z)]cos(a;z) + 2pk^Cio cos[p(h + z)]cos(ah). (184) 
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The reflected pressure field in the fluid is equal to 

P,t(z.,k^,co) 
' 0)_pj_ 

U,_{b,k^,(o) + \ Qxpiiyzj), (185) 

with Zj- being the position where the field is evaluated (m). The total pressure field is the sum of 

the reflected pressure field and the spatially phase-shifted excitation level. It is written as 

Protai (^/ ^^XM = PR {Zf ,k^,co) + Pj (ft)) exp(-i/2^). (186) 

Equations (132) to (186) are the reduced-order model. 
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4. COMPARISON OF MODELS 

By comparing the full- and the reduced-order models, the effects of modeling the metallic 

backing piece as a discrete mass rather than as a thick plate can be discerned. The baseline 

model includes an elastomer with the properties of p-1200 kg/m^, A = 9.8e8(l - 0.0163/) N/m^, 

jU = le7(l - 0.2i) N/m^, and h = 0.0508 m; a steel backing plate with the properties of 

p = 7850kg/m^, A = 1.21ell(l-0.01i)N/m^, // = 8.04el0(l-0.01/)NW, and h = 0.0127 m; 

and fluid with the properties of p = 1025kg/m^ and Cj- = 1500 m/s. The model is evaluated at 

z = -0.0381 m. Figures 2 through 11 present the system responses versus incident angles at 

frequencies from 10 kHz to 100 kHz in 10-kHz increments. In each of the figures, the solid line 

is the double-plate model developed in section 2 and the "x" marks are the reduced-order model 

developed in section 3. In addition, the two plots in the upper left of each of the figures are the 

magnitude and phase angle of the normal displacement divided by incident angle pressure versus 

incident angle. The two plots in the upper right are the magnitude and phase angle of the 

tangential displacement divided by incident angle pressure versus incident angle. The two plots 

in the lower left are the magnitude and phase angle of the normal stress divided by incident angle 

pressure versus incident angle. The two plots in the lower right are the magnitude and phase 

angle of the shear stress divided by incident angle pressure versus incident angle. It is evident 

that at most fi-equencies the reduced-order model is equivalent to the double-plate model. The 

two models diverge somewhat at some specific incident angles. This disagreement corresponds 

to elastic waves in the fiiU-order model that are not present in the reduced-order model. If the 

mass of the metallic plate is increased, the comparison will be more favorable. If the mass of the 

metallic plate is decreased, the two models will begin to deviate from one another. 
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Figure 2. System Response Versus Incident Angle for f= 10,000 Hz 
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5. CONCLUSIONS 

This report has developed a reduced-order model that provides a closed-form solution to the 

problem of a fluid-loaded, elastomeric-coated metallic plate. This solution form is usefiil 

because the dynamics of the problem are now explicit and the contribution of each term to the 

solution is clearly evident. This solution has been compared to the open-form (implicit) solution 

of a fluid-loaded, double-thick plate system from 10 kHz to 100 kHz. The result is that the 

reduced-order model is almost identical to the open-form solution for all the field variables. This 

solution is limited to the case where a stiff plate is covered by a relatively soft plate. Further 

work in this area should be undertaken with experiments so that actual data can be compared to 

the models. 
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